جنبه های رادیولوژیکی آب
هدف این مقاله تعیین حدود مواد رادیواکتیو درآب برای دسترسی به آب آشامیدنی سالم است، بدون توجه به این که مواد رادیواکتیو به طور طبیعی در آب وجود داشته اند یا به وسیله انسان به آب وارد شده اند. مقادیر راهنمای مواد رادیواکتیو در آب آشامیدنی در چاپ اول راهنما بر اساس خطرهای روبه رویی با منابع رادیواکتیو و اثر آن بر سلامتی پیشنهاد شده است. چاپ دوم این راهنما ترکیبی است از پیشنهادهای سال 1990 ICRP . چاپ سوم، پیشرفت های اخیر را در برمی گیرد که شامل روبهرویی طولانی و ضرایب دوزها است.در دنیا مشارکت کمی در زمینه آزمایش سلاح ها و تولیدات هسته ای وجود دارد. سهم سالانه هر نفر در جهان از آزمایشهای هسته ای 05 mSv 0/0 از چرنوبیل mSv 002/0 و از تولیدات هسته ای02 mSv 0/0 برآورد شده است.
روبهرویی با پرتوها از راه آب آشامیدنی
مواد رادیواکتیو در آب آشامیدنی ازموارد زیر منشا می گیرد:
_ وجود انواع رادیواکتیو به طور طبیعی (مانند رادیونوکلیدهای حاصل از واپاشی توریم و اورانیوم در منابع آب آشامیدنی) به خصوص رادیوم 228/226 و بعضی رادیواکتیوهای دیگر؛
_ پروسه های تکنولوژی درگیربا مواد رادیواکتیو (مانند معدن کاری و پروسه تولید بارور کننده های فسفات یا شن های معدنی)؛
_ رادیونوکلییدهای دفع شده از چرخه سوخت های هسته ای؛
_ رادیونوکلییدهای کارخانه ای (تولید وکاربرد در شکل باز Unsealed) که ممکن است در نتیجه دفع قانونی وارد منابع آب شوند، به خصوص در صورت کاربرد های نادرست صنعتی و دارویی و دفع مواد رادیواکتیو. این قبیل رویدادها با موارد اضطراری متفاوت است و خارج از محدوده این راهنما هستند؛
_ رها سازی رادیونوکلییدها در محیط (در منابع آب) در گذشته.
روبهرویی با رادیونوکلییدها از راه آب آشامیدنی بسیارکم و بیشتر ناشی از واپاشی طبیعی اورانیوم وتوریم است. رادیونوکلییدهای حاصل از چرخه سوخت هسته ای و داروسازی و دیگر کاربردهای مواد رادیواکتیو ممکن است به منابع آب آشامیدنی وارد شوند. اثرهای این منابع معمولا با کنترل منظم منابع محدود می شود. در مواردی که این منابع باعث آلودگی آب آشامیدنی می شوند باید با کنترل منظم اقدامات اصلاحی انجام گیرد.
اثرات پرتوها بر سلامتی از راه آب آشامیدنی
از مطالعات بر روی انسان و حیوان شواهدی به دست آمده که نشان می دهد روبه رویی با پرتو در دوزهای کم تا متوسط ممکن است باعث افزایش موارد سرطان در دراز مدت می شود. مطالعات بر روی حیوانات به خصوص نشان میدهد که نرخ ناهنجاری های ژنتیکی در اثر روبه رویی افزایش می یابد.
در صورتی که غلظت رادیونوکلییدها در آب آشامیدنی کمتر از حدود راهنما باشد، مصرف آن هیچ اثر زیان باری برسلامتی نخواهد داشت. (دوز موثر معادل کمتر از mSv/year 0/1)
اثرات مزمن پرتوها بر سلامتی شامل کاهش سلول های خون و در موارد بسیار جدی تر مرگ ، در روبهرویی همه یا قسمتی از بدن با دوز های بسیاربالا اتفاق می افتد.
حد پایین رادیونوکلییدها یی که به طور معمول در منابع آب آشامیدنی یافت می شوند، اثر مزمن قابل توجهی بر سلامتی ندارند.
واحدهای دوز پرتو و رادیواکتیو
واحد SI برای رادیواکتیو بکرل است. یک واحد بکرل برابر است با یک واپاشی در ثانیه. حدود راهنمای آب آشامیدنی بر حسب فعالیت رادیونوکلیید در لیتر، غلظت فعالیت (Bq/Li) نامیده می شود. دوز تشعشع ناشی از خوردن رادیونوکلیید به عوامل شیمیایی و بیولژیکی بستگی دارد. این عوامل عبارت است از قسمتی از مواد که از طریق روده جذب می شود، اندام یا بافتی که رادیونوکلیید رو جابه جا می کند و زمانی که رادیو نوکلیید پیش از جذب در آن بافت یا اندام می ماند. هم چنین ماهیت پرتوهای واپاشی شده و حساسیت اندام یا بافت آسیب دیده نیز باید در نظر گرفته شود.
دوز جذب شده به مقدار انرژی ذخیره شده در ماده به وسیله پرتو بر می گردد. واحد SI برای دوز جذبی، گری (Gy) است که یک گری برابر است با یک ژول بر کیلوگرم. Gy=1 J/Kg1
دوز معادل عبارت است از دوز جذبی به دست آمده و یک فاکتور مربوط به نوع خاص تابش، بسته به ظرفیت یونیزاسیون و وزن مخصوص.
دوز موثر پرتو دریافت شده به وسیله یک فرد، به بیان ساده عبارت است از مقدارمعادل دوز دریافت شده به وسیله اندامها و بافت های مختلف بدن انسان. اندام ها و بافت هابه پرتوها حساسیت های متفاوتی نشان می دهند. واحد SI برای دوز موثر و دوز معادل Sv است، Sv =1 Kg/year1
در صورتی که رادیونوکلیید یک بار خورده شود به دلیل ادامه جذب رادیو نوکلیید از طریق روبهرویی داخلی دوز موثر عبارت است از سنجش کل دوز موثر دریافتی در طول زندگی (70 سال)
کلمه دوز بسته به موقعیت هم به معنی دوز جذبی (Gy) و هم دوز موثر (Sv) به کارمی رود. برای پایش هدف، دوزها از روی میزان فعالیت رادیونوکلیید در یک ماده مشخص تعیین می شوند. در مورد آب، میزان فعالیت بر حسب بکرل بر لیتر داده می شود. این مقدار می تواند به دوز موثر سالانه mSv/year مربوط شود. با استفاده از ضریب دوز (mSv/Bq) و متوسط مصرف سالانه آب (Li/year) دوز موثر ناشی از خوردن یک رادیو ایزوتوپ در یک فرم شیمیایی معین را با استفاده از ضریب دوز می توان تعیین کرد. اطلاعات مربوط به ضریب دوزهای وابسته به سن برای دریافت (خوردن) رادیونوکلییدها به وسیله ICRP و IAEA منتشر شده است.
حدود راهنمای رادیونوکلییدها در آب آشامیدنی
برای رادیونوکلییدهایی است که از منابع طبیعی نشات گرفته اند یا در نتیجه فعالیت هایی که در حال انجام است یا درگذشته انجام شده است به محیط وارد میشوند. این راهنما رادیونوکلییدهای آزاد شده به دلیل حوادث هسته ای رخ داده در یک سال پیش را نیز در بر می گیرد. این مقادیر با RDL=0/1mSv/yearاز هر رادیونوکلییدموجود در لیست که غلظت آن در آب آشامیدنی مصرفی در طول سال بیش از این مقدار نباشد، معادل است.
خطرمرتبط احتمالی در ابتدای این مقاله آورده شده است. گرچه در یک سال اول بعد از رویداد، حدود ژنریک برای مواد خوراکی براساس IAEA 1996 و سایر انتشارات IAEA و WHO می باشد.
حدود راهنما برای رادیونوکلییدها در آب آَشامیدنی از معادله زیر محاسبه می شود:
GL=IDC/(hing.q)
GL: حدود راهنمای رادیونوکلییدها در آب آشامیدنی Bq/Li
IDC: معیار دوز فردی، در این جا1 /mSv/year 0
hing: ضریب دوز جذب بزرگسالان (ingestion dose)
q: مقدار مصرف سالانه آب آشامیدنی با فرض Li/year 730
پایش و ارزیابی رادیونوکلیید های محلول
غربالگری منابع آب
مراحل تعیین گونه های اختصاصی رادیونوکلییدها و تعیین غلظت آنها نیازمند آنالیزهای پیچیده و پرهزینه است که توصیه نمی شود، زیرا غلظت رادیو نوکلییدها بسیارکم است. بهترین راه، کاربرد مراحل غربال گری است یعنی تعیین همه رادیونوکلییدهای موجود در شکل آلفا و بتا در ابتدا و بدون توجه به ماهیت رادیونوکلییدهای خاص.
حدود غربال گری (پوشش) بدون نیاز به هیچ کار اضافه ای، Bq/L 0/5 برای آلفای ناخالص و Bq/L 1 برای بتای ناخالص است. حـد غربـال گـری فعالیـت بتـای ناخالص منتشرشده در دومین چاپ راهنما، در بدترین حالت (222Radium-) به دوز RDL=0/1mSv/year نزدیک است. حد غربال گری فعالیت آلفای ناخالص Bq/L 5/0 به جای حد پیشین Bq/L 0/1 است زیرا این مقدار به RDL نزدیک تر است.
استراتژی ارزیابی آب آشامیدنی
اگر هر یک از حدود غربال گری (پوشش) افزایش یابد، باید رادیونوکلیید خاص مشخص شود و میزان فعالیت اختصاصی آن اندازه گیری شود. سپس دوز موثر برای هر رادیونوکلیید برآورد شود و مجموع این دوزها تعیین گردد.
در صورتی که غلظت اندازه گیری شده برای یک نمونه خاص در یک دوره یک ساله بالاتر از حد RDL باشد، می توان RDL را افزایش داد. چنین نمونه ای بیانگر این نیست که آب مورد نظر برای آشامیدن نامناسب است اما نشان می دهد که نظارت بیشتر و نمونه برداری های بیشتری لازم است. ابتدا فعالیت بتای ناخالص و آلفای ناخالص اندازه گیری می شود، در صورتی که سنجش های متوالی میزانی بیش ازمقادیرتوصیه شده را (به ترتیب Bq/L 0/5 و Bq/L 1) نشان دهد آنالیز رادیونوکلیید انجام می گیرد.
سنجش بتای ناخالص تحت تاثیر پتاسیم 40 است، یک عنصر ساطع کننده بتا که به طور طبیعی در یک نسبت ثابت به پتاسیم پایدار تبدیل می شود. پتاسیم یکی از عناصر ضروری بدن انسان است و عمدتا از راه مواد خوراکی جذب می شود. این عنصر در بدن تجمع پیدا نمی کند اما مستقل از میزان جذب در یک سطح ثابت باقی می ماند. بنابراین میزان پتاسیم 40 باید در فعالیت بتا جداگانه محاسبه شده و از میزان کل کم شود. فعالیت ویژه پتاسیم 40، Bq/g 30/7 است. همهی تشعشع پتاسیم40 به شکل فعالیت بتا نیست. فعالیت بتای پتاسیم40، Bq/g 27/6 کل پتاسیم است و فاکتوری است که باید در محاسبه فعالیت بتای پتاسیم40 در نظر گرفته شود.
سنجش های اصلاحی
اگر RDL به میزان mSv/year 0/1 در مجموع افزایش یابد، گزینه های در دسترس برای کاهش دوز باید امتحان شود. وقتی سنجش های اصلاحی در نظر باشد، هر استراتژی باید ابتدا برای رسیدن به سود خالص توجیه شود سپس با توجه به پیش نهادهای) ICRP 1991-1989) و به منظور تولید حداکثر سود خالص باید بهینه سازی گردد.
رادون
رادون در هوا و آب
بیشترین سهم روبهرویی طبیعی با پرتوها مربوط به رادون است. رادون، یک گاز رادیواکتیو ناشی از واپاشی رادیوم موجود در صخره ها به عنوان قسمتی از زنجیره رادیونوکلیید اورانیوم است. کلمه رادون عموما به رادون 222 گفته می شود رادون در همه جای کره زمین وجود دارد به خصوص در هوای بالای خشکی و در ساختمان ها.
صخره های زیرزمینی دارای رادیوم طبیعی پیوسته رادون را به درون آبی (آب زیرزمینی) که با آن در تماسند آزاد میکنند. رادون به راحتی از سطح آب آزاد می شود. غلظت رادون در آب های زیرزمینی به طور بالقوه خیلی بیشتر از آبهای سطحی است. میانگین غلظت رادون در منابع آب عمومی که از آب های سطحی تامین می شوندکمتر از Bq/L 0/4 و در منابعی که از آب های زیرزمینی تامین می شوند در حدود Bq/L 20 است. گرچه غلظت رادون در برخی از این چاه ها بیش از 400 برابر میانگین و در به ندرت بیش از 10 کیلوبکرل بر لیتراست.
در ارزیابی جذب رادون از راه آشامیدن مهم این است که تکنولوژی پروسه آب طوری طراحی شود که رادون قبل از مصرف حذف شود. (پروسه حذف رادون باید پیش ازمصرف در نظر گرفته شود) علاوه بر آن استفاده از منابع آب زیرزمینی دارای رادون که رادون آنها حذف نشده است باعث افزایش سطح رادون در هوای داخل ساختمان ها شده، در نتیجه دوز دریافتی از راه تنفس افزایش یافته است، که مخصوصا بستگی به نوع مصرف خانگی و ساختمان دارد زیرا بیشتر رادون موجود در هوای ساختمان از راه پایه های ساختمان که بیش از آب با زمین در تماسند، وارد می شود.
مقدار و روش جذب آب، مصارف خانگی آب و ساختمان خانه ها در دنیا بسیار تغییر کرده است.) NSCEAR 2000( بر اسـاس گـزارش UN NAS متوسـط دوز رادون را در آب آشامیـدنی کمتر از 0/0025mSv/year از راه تنـفـس و mSv/year 0/002 از راه خوردن در مقایسه با تنفس mSv/year 1/1 رادون و واپاشی آن در هوا گزارش کرده است.
خطر
یک گزارش نشان می دهد که 12% مرگ ناشی از سرطان در آمریکا به دلیل وجود رادون در هوای داخل ساختمان بوده است. رادون 222 و واپاشی آن (از بین 160000 مرگ سالانه ناشی از سرطان ریه) که عمدتا نتیجه مصرف تنباکواست، رادون عامل19000مورد (22000-15000) شناخته شده است. (US NR1999)
(1999) UN NAS خطر ناشی از روبهرویی با رادون از راه آب آشامیدنی را تقریبا 100 بار کوچکتر گزارش می کند. (یعنی 183 مورد در سال)
علاوه بر آن از 19000 مرگ ناشی از سرطان ریه به دلیل وجود رادون در هوای درون ساختمان ها، تقریبا 160 مورد ناشی از تنفس رادونی است که از آب آشامیدنی مصرفی خانه به هوا وارد می شود. در مقایسه، حدود 700 مورد مرگ ناشی ازسرطان ریه درسال به روبهرویی با حد طبیعی رادون در هوای آزاد بستگی دارد.
US NAS همچنین می گوید که خطر سرطان معده از راه آب آشامیدنی دارای رادون محلول، بسیار کم است با احتمال حدود 20 مورد سالانه در مقایسه با 13000 مورد مرگ ناشی از سرطان معده به دلایل دیگر در آمریکا.
اصول راهنمای رادون در منابع آب آشامیدنی
اگر غلظت رادون در منابع آب آشامیدنی مصرفی مردم از Bq/L 100 بیشتر شود، این منابع باید کنترل شوند. هر منبع جدید آب آشامیدنی با منشا آب زیرزمینی قبل از استفاده باید آزمایش شود. اگر غلظت رادون بیش از Bq/L 100 باشد، با تصفیه منبع آب باید میزان رادون را به کمتر از این مقدار رساند. اگر به میزان قابل توجهی مواد تولید کننده رادون پیرامون منبع آب وجود دارد بهتر است که این منابع به صورت دوره ای مثلا هر 5 سال یک بار آزمایش شوند.
نمونه برداری، آزمایش و گزارش
اندازه گیری میزان فعالیت آلفا و بتای ناخالص
برای آزمایش آلفا و بتای ناخالص (رادون) در آب آشامیدنی بهترین روش این است که حجم مشخصی از نمونه را خشک کنیم و غلظت باقی مانده را اندازه گیری کنیم. از آنجایی که اشعه آلفا به راحتی درون لایه نازک مواد جامد نفوذ می کند، دقت و حساسیت روش تعیین آلفا در نمونه های دارای TDS بالا کاهش می یابد.
در تعیین فعالیت بتای ناخالص با استفاده از روش تبخیر، پتاسیم 40 تداخل میکند، بنابراین اگر میزان بتای ناخالص افزایش یابد باید میزان پتاسیم کل نیز اندازه گیری شود.
روش co-precipitation (APHA 1998) از تداخل پتاسیم 40 جلوگیری می کند، بنابراین به تعیین پتاسیم کل نیازی نیست. این روش برای ارزیابی نمونه های آب دارای فراورده های شکافت هسته ای (مانند سزیم 147)، کاربردی نیستند. گرچه در شرایط طبیعی، غلظت این فرآورده ها در منابع آب آشامیدنی بسیار پایین است.
اندازه گیری رادون
از آنجایی که در زمان جابهجایی آب، رادون به راحتی آزاد می شود تعین غلظت رادون 222 در آب آشامیدنی مشکل اسـت. جابه جایـی آب از یـک مخـزن به مخزن دیگر رادون محلول را آزاد می کند. به دلیل کاربـرد گسترده روش (PYLON 1993-2003) PYLON تعیین رادون در آب آشامیدنی با استفاده از واحد گاززدایی و اتاق های آشکارساز انجام می گیرد. میزان رادون در آب هایی که در یک جا ثابت نگه داشته شوند کاهش می یابد. جوشاندن آب رادون را از بین می برد.
نمونه برداری
قبل از طراحی و ساخت منابع آب آشامیدنی برای تعیین کیفیت رادیولوژیکی منابع و ارزیابی تغییرات فصلی غلظت رادیونوکلیید، منابع زیرزمینی جدید باید حداقل یک بار آزمایش شوند. این آزمایش ها رادون و ... را در بر می گیرد. اولین سنجش ها، محدوده نرمال را تعیین می کند، نمونه برداری های بعدی هر پنج سال یک بار انجام می گیرند.گرچه اگر منابع بالقوه آلودگی رادیونوکلییدی در نزدیکی وجود داشته باشد (مانند معدن کاری یا راکتور های هسته ای) نمونه برداری باید پیدرپی انجام گیرد. تعداد نمونه برداری ها از آب آشامیدنی زیرزمینی یا سطحی که اهمیت زیادی ندارند،کمتر است.
میزان رادون در منابع آب زیرزمینی همیشه ثابت است. بنابراین پایش پی درپی این منابع لازم نیست. دانش زمین شناسی مناطق میتواند در تعیین این که یک منبع غلظت قابل توجهی از رادون دارد یا نه کمک کند. در شرایطی که معدن کاری در نزدیکی منابع وجود دارد، پایش های بیشتری نیاز است.
راهنمای ارزیابی کیفیت آب، تکنیک ها وبرنامه های نمونه برداری و ذخیره و جابه جایی نمونه ها در استاندارد استرالیا و نیوزیلند آورده شده است.
گزارش نتایج
گزارش آزمایش ها برای هر نمونه باید اطلاعات زیر را در برداشته باشد:
اطلاعات یا کد تعیین نمونه
تاریخ و ساعت نمونه برداری
تعیین روش آزمایش استاندارد به کاربرده شده یا خلاصه ای از روش ها غیر استاندارد به کاررفته
تعیین رادیونوکلیید (ها) یا نوع و کل رادیونواکتیویته تعیین شده
غلظت پایه اندازه گیری شده یا مقدار فعالیت محاسبه شده با استفاده از بلانک مناسب برای هر رادیو نوکلیید
برآورد میزان خطای محاسبه و خطای کل پروژه
حداقل غلظت قابل تشخیص برای هر رادیونوکلیید یا پارامتر آزمایش شده
خطای کل پروژه باید تداخل همه پارامترها را در روش آزمایش در بر گیرد مانند خطای سیستمیک، خطای آماری و ...
ICRP International commission on Radiological Protection
RDL Recommended Reference Dose Level
IAEA International Basic Safety Standard
منبع:
Guidelines for Drinking Water Quality (WHO 2006) - FIRST ADDENDUM to THIRD EDITION
ترجمه: روح انگیز زمانی - آزمایشگاه آب مرکز بهداشت شهدای والفجر شهرستان شیراز - مردادماه 1390
مواد رادیواکتیو در آب به طور کلی به صورت سه دسته ذرات آلفا ، ذرات بتا و اشع گاما در منایع آبی وجود دارند که اندازه گیری مواد رادیواکتیو در آب در آزمایشگاه های مجهز باید به صورت دوره ای انجام شود. منایع آلوده کننده رادیو اکتیویته آب به صورت طبیعی در برخی نقاط زمین وجود دارند که موجب آلودگی آب های زیر زمینی می شود. فضولات دفن شده رادیو اکتیو و یا تخلیه فاضلاب های صنایع هسته ای دارای مواد مواد رادیو اکتیو هستند که در آب های سطحی و زیر زمینی پس از تخلیه اثرات سو می گذارند.
ذرات و تشعشات در هنگام تماس با مواد رادیواکتیویته در بدن نفوذ نمونه و باعص تغییراتی در پروتوپلاسم سلول ها خواهند گردید. این تغییرات موجب تشکیل مولکول ها و مواد دیگری را فراهم می نمایند که به جای خود تغییرات زیستی دیگری را سبب می شوند. تششعات ممکن است بدون هرگونه صدمه ای از سلول عبور نمایند. ولی چنانچه تغییراتی را در سلول ایجاد کنند و سلول تغییر یافته به صورت طبیعی ترمیم نیابد و تکثیر می یابند. و تغییرات دراز مدتی را مانند سرطان، صدمات جنسی و ارثی را ایجاد می کنند. این تغییرات به عوامل زیر بستگی دارند.
جهت اطلاع از مطالب به روز سایت به کانالهای ما در شبکه های اجتماعی بپیوندید.
(جهت دسترسی به مطالب به روز به سمت چپ سایت بخش آخرین مطالب مراجعه کنید)